MATH 2050C Mathematical Analysis I
2018-19 Term 2

Suggested Solution to Midterm
1(a)

The completeness property of R says that any non-empty subset of R which is
bounded above has a supremum in R.

1(b)

Since S is a non-empty subset of R which is bounded above, by the completeness
property of R, the supremum of S exists in R. Let u = sup S.

We first show that —u is a lower bound for —S, hence —S' is bounded below.
Since w is the supremum of S, in particular, it is an upper bound of S, which
means that s < u for all s € S. Multiplying by —1 gives —s > —u for all s € S.
Since every element of —S has the form —s for some s € S, —u is a lower bound
of —S.

Next, we show that —u is the greatest lower bound for —S, ie. —u =
inf(—5). In other words, we want to show that —u + € is not a lower bound of
—S for any € > 0. Since u is the least upper bound of S, for any € > 0, u — € is
not an upper bound of S. Therefore, there exists some sy € S, depending on e,
such that u — € < sg. Multiplying by —1 gives —u + € > —sg. Since —sg € =5,
—u + € cannot be a lower bound for —S. Since € > 0 is arbitrary, this proves
that —u = inf(—S5).

2(a)

First of all, observe that bw > 1 for all n € N since b > 1. Therefore, we can
write bw = 1+d,, for some d,, > 0. By Bernouli’s inequality, since d,, > 0 > —1,

b=(14d,)" >1+nd,.

This implies that d,, < b_Tl for each n € N.

To prove that lim(b%) = 1. Let € > 0 be fixed but arbitrary. By Archimedean
Property, we can choose K € R such that K > b;el > 0. For any n > K, we
have b—1 b-1

. _ _
b — 1] = |dal <<



2(b)
Since 0 < a < 1, we have 0 < a™ < 1 for all n € N. Therefore, for all n € N,
1< (1+a™)w < 2%,

By (a), lim(27) = 1. Also, we have lim(1) = 1. By squeeze theorem, we have
lim((1 4 a™)%) =1 as well.

3(a)
We will prove the statement by mathematical induction. Note first that for
n=1,1<z;=1<3. Assume 1 < z; < 3 for some k € N. Then,
2
3+ 2z 1 Ty >1
3+ xp 3+ xp

Te4+1 =

where the last inequality holds since xx > 1 > 0. On the other hand,

3+ 2z 3
= =2 <2<3
Thtt 34+ xp 34+x, — T

where the second to the last inequality holds since z; > 1 > 0.

3(b)
We will show that z,, < x,41 for all n € N again by induction. Note that
5
r1=1< 1 = 9.

So the statement is true for n = 1. Suppose xj < xpy1 for some k£ € N. Note
that

3+21'k+1 3+ 2x 3($k+1 71’]6)

Tp+2 — Tk+1 = - = =z

3+ Tpgt 3tz B+ zre1)(3+ xp)
where we have used the induction hypothesis that x; < x4 and that «, > 0
for all n € N by (a). By mathematical induction, we have z,, < x,,41 for all
n € N.

Combining with (a), (z,,) is an increasing sequence which is bounded above
by 3. By Monotone Convergence Theorem, (z,) converges to a unique limit
x € R. Since lim(zy,41) = lim(z,,) = =, by taking limit in the recursive relation.
We obtain

_3+2
3+
Rearranging gives the quadratic equation 2 + x — 3 = 0, which yields
-1++v13 -1—-+13
T=—p — o T=———.

The second solution is discarded as we know by (a) that 1 < z = lim(x,,) < 3.
—1+V13
R

Therefore, lim(z,,) =



4

We prove by contradiction. Suppose v/12 is not irrational. Then, there exists
m,n € Z, n # 0, such that m and n are relatively prime and /12 = m/n.
Squaring both sides and rearranging gives

12n2 = m?2.

Since 3 divides 12, it also divides m?, and hence m as well because 3 is prime.
Write m = 3k for some k € Z. We have

12n% = m? = (3k)? = 9k>.

Thus, 4n? = 3k2. Therefore, by the same argument, 3 divides n? and hence
n. As a result, m and n are both divisible by 3 which contradicts the fact that
they are relatively prime.

5

We proceed by contradiction. Suppose on the contrary that (z,) does not
converge to x. Then, there exists ¢y > 0 and a subsequence (z,,) of (x,) such
that

|Tn, — x| > € for all k € N. (1)

On the other hand, since (z,,) is a subsequence of (z,), by assumption there
exists another subsequence (zn,,) of (zn,) such that lim(z,, ) =z as £ — occ.
This implies that for the particular ¢y > 0 above, we can find some L € N such
that

|Zn,, — 2] < €o forall ¢ > L.

However, since (z,, ) is a subsequence of (z,,), every term in the sequence
(Tny,) also satisfies (1) Therefore, we obtain when ¢ = L,

€ < |£Unk,L — x| < €,
which is a contradiction.

6(a)

Since (x,,) is a bounded sequence, there exists some M > 0 such that |z,| < M
for all n € N. Therefore,

—M < sy i=inf{x, :n>m} <z, <M

for all m € N. Thus, the sequence (s,,) is bounded above by M.
Next we show that (s,,) is an increasing sequence. Recall that inf S; > inf So
for any bounded subset S; C Sy of R. As

{zp:n>m+1} C{z,:n>m}.



Taking infimum gives s,,11 > s, for any m € N. Therefore, (s,,) is an increas-
ing sequence.

Since (s,,) is an increasing sequence which is bounded above, by Monotone
Convergence Theorem (s,,) is convergent with

lim(s,,) = sup{sm, : m € N}.

6(b)

Let = € [0, 1] be fixed but arbitrary. By density of Q, there exists some rational
number 0 < ¢ < 1 in the interval (z — %,1’ + %) such that ¢ # x. Define g,, to
be this rational number.

To define the next term ¢, in the subsequence, notice that there are only
finitely many terms q1,q2,- - ,Gn,—1 before ¢,, in the sequence (g,) and that
any open interval contains infinitely many rational numbers (for example, by
density of Q). Therefore, there exists ¢,, with ny > n; such that ¢y, lies in the
open interval between ¢,, and x such that |g,, — x| < 1/3.

Inductively, after ¢y, is fixed, we can choose gy, 41 such that ngyq > ny and
Iny.., 7 @ lies in the open interval between g, and x such that |g,, — x| <
kil' As lim(%ﬂ) = 0, we have obtained a subsequence (g, ) of (¢,) such that
lim(gp,) = .




